Fully discharging phases. A new approach to biphasic waveforms for external defibrillation.
نویسندگان
چکیده
BACKGROUND Phase-2 voltage and maximum pulse width are dependent on phase-1 pulse characteristics in a single-capacitor biphasic waveform. The use of 2 separate output capacitors avoids these limitations and may allow waveforms with lower defibrillation thresholds. A previous report also suggested that the optimal tilt may be >70%. This study was designed to determine an optimal biphasic waveform by use of a combination of 2 separate and fully (95% tilt) discharging capacitors. METHODS AND RESULTS We performed 2 external defibrillation studies in a pig ventricular fibrillation model. In group 1, 9 waveforms from a combination of 3 phase-1 capacitor values (30, 60, and 120 microF) and 3 phase-2 capacitor values (0=monophasic, 1/3, and 1.0 times the phase-1 capacitor) were tested. Biphasic waveforms with phase-2 capacitors of 1/3 times that of phase 1 provided the highest defibrillation efficacy (stored energy and voltage) compared with corresponding monophasic and biphasic waveforms with the same capacitors in both phases except for waveforms with a 30-microF phase-1 capacitor. In group 2, 10 biphasic waveforms from a combination of 2 phase-1 capacitor values (30 and 60 microF) and 5 phase-2 capacitor values (10, 20, 30, 40, and 50 microF) were tested. In this range, phase-2 capacitor size was more critical for the 30-microF phase-1 than for the 60-microF phase-1 capacitor. The optimal combinations of fully discharging capacitors for defibrillation were 60/20 and 60/30 microF. Conclusions-Phase-2 capacitor size plays an important role in reducing defibrillation energy in biphasic waveforms when 2 separate and fully discharging capacitors are used.
منابع مشابه
Strength-duration and probability of success curves for defibrillation with biphasic waveforms.
Certain biphasic waveforms require less energy to defibrillate than do monophasic pulses of equal duration, although the mechanisms of this increased effectiveness remain unclear. This study used strength-duration and percent success curves for defibrillation with monophasic and biphasic truncated exponential waveforms to explore these mechanisms. In part 1, defibrillation thresholds were deter...
متن کاملSimultaneous Comparison of Many Triphasic Defibrillation Waveforms
Biphasic defibrillation waveforms are now accepted as being more effective at terminating ventricular fibrillation (VF) than monophasic waveforms. If two phases are better than one, this naturally leads to the hypothesis that additional phases improve efficacy. This study tests the hypothesis by adding one additional phase. We examined the efficacy of 18 different triphasic waveforms simultaneo...
متن کاملOptimization of biphasic waveforms for human nonthoracotomy defibrillation.
BACKGROUND Biphasic waveforms reduce defibrillation threshold (DFT) in a wide variety of models. Although there are several human studies of long-duration, high-tilt biphasic waveform defibrillation, the specific biphasic waveform shape required to achieve optimal DFT reduction is unknown. METHODS AND RESULTS This study tested the effect of single capacitor biphasic waveform tilt modification...
متن کاملComparing the efficacy and safety of a novel monophasic waveform delivered by the passive implantable atrial defibrillator with biphasic waveforms in cardioversion of atrial fibrillation.
BACKGROUND The passive implantable atrial defibrillator (PIAD) (with no battery or discharging capacitor and powered transcutaneously by radio-frequency energy) delivering a novel monophasic low-tilt waveform is more efficacious than the standard monophasic waveform at atrial defibrillation. Standard biphasic (STB) waveforms, however, are more efficacious and safer than monophasic waveforms. Th...
متن کاملOptimal small-capacitor biphasic waveform for external defibrillation: influence of phase-1 tilt and phase-2 voltage.
BACKGROUND Biphasic waveforms have been reported to be more efficacious than monophasic waveforms for external defibrillation. This study examined the optimal phase-1 tilts and phase-2 leading-edge voltages with small capacitors (60 and 20 microF) for external defibrillation. We also assessed the ability of the "charge-burping" model to predict the optimal waveforms. METHODS AND RESULTS Two g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 100 8 شماره
صفحات -
تاریخ انتشار 1999